

Expanding your risk management toolbox - onfarm tools for water quality and pathogen monitoring (GF2 0251 FCO-HMGA)

> Intro IPM Workshop February 17, 2017

Objective:

- Develop PRACTICAL methods that growers can use to:
 - Track microbial water quality manage RISK
 - Monitor water treatment system performance
 - Proactively manage water quality throughout the whole production system

Concerns for Greenhouse Flower Growers

- Plant pathogens going into production areas from fresh or recycled water
- Treatment system performance

Concerns for Vegetable & Herb Growers

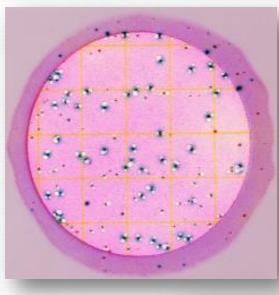
- All of the above, plus
- Food safety in production and processing
- Food safety Regulations

Project Cooperators

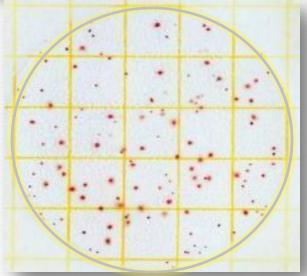
Cooperator	Crops	Irrigation systems	Recirc ?	treatment
Greenhouses (7)	PottedBedding	 Flood floor, trough, Dutch tray Drip Overhead 	YES	 UV (5) Cloth filter(7) Peroxide (2) Copper Chlorine dioxide ECA Ozone Woodchip Bioreactor Constructed wetland
Vegetable growers/ Washers (8)	Greens	 Overhead irrigation Wide range of washing systems 	Some	Nothing to everything!

Results -

"Toolbox" of methods for microbial water quality assessment

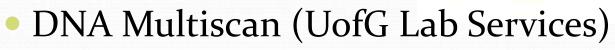

• **3M Petrifilms** - a measure of RISK

- Total yeast & mold risk of <u>fungal</u> pathogens
- **Total aerobic plate count** (bacterial) general water quality; risk of <u>biofilm</u> development in pipes and drippers
- *E.coli* and total coliforms (if <u>food safety</u> is a concern)
- **DNA multiscans** identifies WHAT is there



3M Petrifilms:

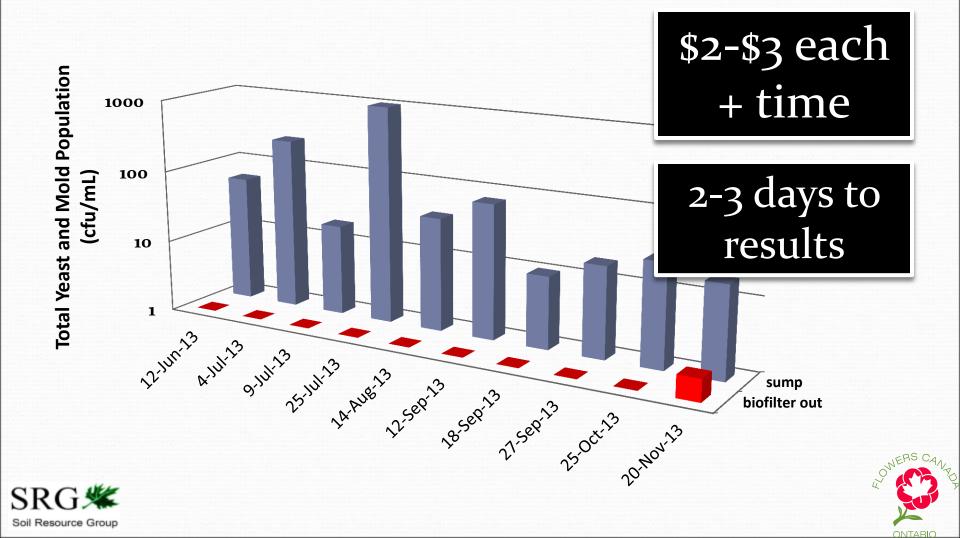
Food Safety: *E.coli*, Coliforms


General water quality: Total aerobic bacteria

Tools for fungal plant pathogens

- 3M Petrifilm Yeast & Mold
- Standard plating methods
- Sani-Check dipslides
- AgDia test strips

DNA Multiscan testing

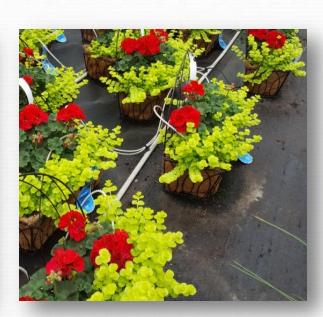

Site code	F2															
Crop	Cut mixed	/		(/	1	(/						
System	Recirculating			((
Treatment	UV								Tues	- +						
		📕 Un	ntreate	sa Lec	ILC. M	ater 🧃			Irea	ated w	/ater					
DNA Multisca	an scores	4				/										
			1		water - untrea						eated					
Sample Code		F2-3	F2-3	F2-3	F2-3	F2-3		F2-4	F2-4	F2-4	F2-4	F2-4				
Sample Name		Cistern 1	Cistern 1	Cistern 1	Cistern 1	Cistern 1		Cistern 2	Cistern 2	Cistern 2	Cistern 2	Cistern 2				
Sampling Date		14-May-12	5-Jun-12	5-Jul-12	1-Aug-12	15-Aug-12	l !	14-May-12	5-Jun-12	5-Jul-12	1-Aug-12	15-Aug-12				
3 11 201	Botrytis cinerea	1	0	0 0	/ 0	10		1	1	<u>د</u> 0'	0 0	0				
	Fusarium oxysporum	1	0	0	ر1	. <u> </u>		0	1	1′	1	0				
	F. solani	1	. 0	0	رار	1	l 1	1	1	1′	(1	1				
	Phytophthora sp.	1	0	0	1	0	l 1	2	0	<u>י</u> ן ר		0				
	P. cactorum	0	0	0 0	0 0	1 <u>0</u> 1		0	0	0 A	l l	0				
	P. capsici	0'	0 0	0 0	0 0	1 <u>0</u> 1		0				0				
	P. cinnamomi	0'	0 0	0 0	0 0	0	1	0								
	P. cryplogea	0'	0 0	0 0	0 0	0	1 1	0			DPS !	0				
	P. drechsleri	0'	0 0	0 0	0 0	0	1 1	0								
	P. fragariae	0'	0	0 0	0 0	1 <u>0</u> 1	1 1	0	0	0		0				
	P. infestans		0	0 0	0 0	0	1 1	0	C			0				
	P. nicotianae	0		0	0 0	0	1 1	0		Ve Ve						
Target	Pythium sp.	3	3 1	1	. 1		I 1	4	3	3	<mark>ر ا</mark>	0				
Organism	P. aphanidermatum	e'	0 0	0 0	0 0	0	1 1	0			0 0	0				
	P. dissotocum	F	<mark>ر ا</mark>	7	<u>/</u> 3'	<mark>ر عا</mark> ر	A 1	6	8		<mark>ر ا</mark>	0				
	P. irregulere	1	1 0	0 0	0 0	0	1 1	0	0	0 0	0 0	0				
	P. polymastum	e'	0 0		0 0	10 IL	1	0	1	1 0	0 0) 0				
	P. sylvaticum	0		0	0 0	0	1 1	0	2	0 0	0 0) 0				
	P. ultimum		0	0 0	0 0	0	1 1		0	0 0	n n					
	Rhizoctonia solani	e'	0 0	0 0	0 0	0	1 1	0								
	Sclerotinia sp.	0'	0 0	0 0	0 0	1 <u>0</u> 1	1 1	0			2020	s for				
	Thielaviopsis basicola	0'	0 0	0 0	0 0	0	1	0			SUNT					
	Verticillium albo-atrum	0'	0 0	0 0	0 0	0 0	1	0								
	Verticillium dahliae	0'	0 0	0 0	0 0	0 0	1 1	0		11/	esul	4-0				
	V. dahliae (ver longisporum	0	0 0	0 0	0 0	0 0	l	0			Sur					

Plant pathogen removal by woodchip

bioreactor – DNA Multiscan testing

	Untreated Sump Water								Woodchip Bioreactor Treated							
Target Organism	22 May 12	5 June 12	5 July 12	1 Aug 12	15 Aug 12	12 June 13	5 Sept 13	22 May 12	5 June 12	5 July 12	1 Aug 12	15 Aug 12	12 June 13	5 Sept 13		
Botrytis	2	3	1	0	1	0	0	0	0	0	0	0	0	0		
Fusarium	0	1	1	1	2	1	1	0	0	0	0	0	0	1		
Phytophthora	0	1	0	0	0	1	0	0	0	0	0	0	1	0		
Pythium	0	5	4	5	3	10	1	0	0	0	0	0	1	0		
Rhizoctonia	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Olpidium	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Sclerotinia	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Thielaviopsis	0	0	0	0	0	0	0		\$175	-\$-))5	62	ch	D		
Verticillium	0	0	0	0	0	0	0		φ 1 /)) ψ.				0		

3M Petrifilm for yeast & mold



Methods

Sampling Program

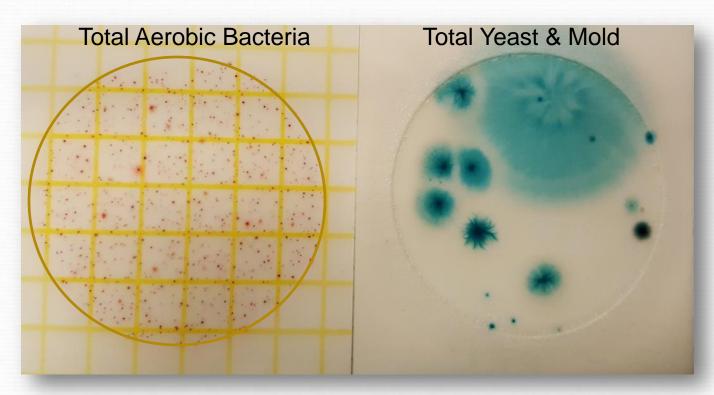
- What are your primary concerns?
- Where are your critical monitoring points?
- What are the best (least busy) days to do this make it part of your routine.

Methods: Sample collection

Whirl-Paks

Methods: dilutions and plating on Petrifilms

Methods: incubation


\$159 at Amazon.ca

\$373 at Amazon.com

OR Room temperature for Aerobic and Y&M

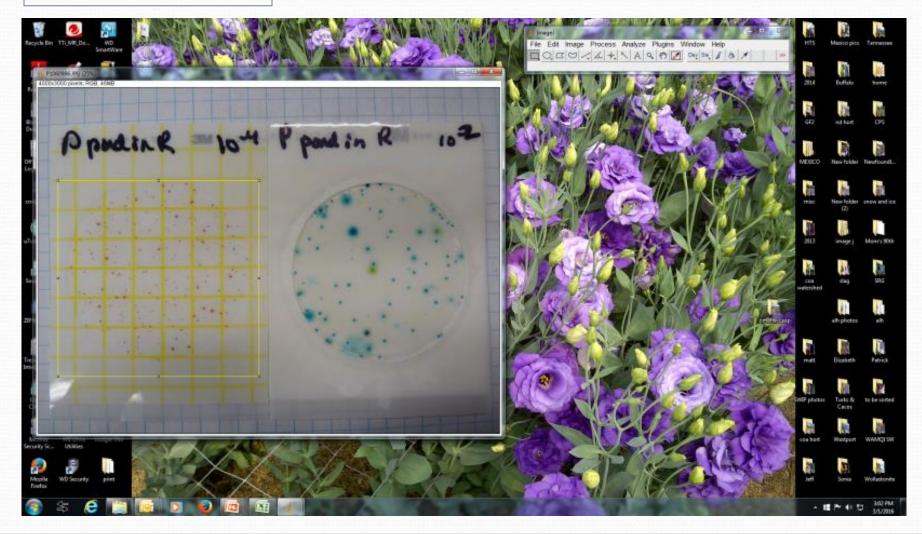
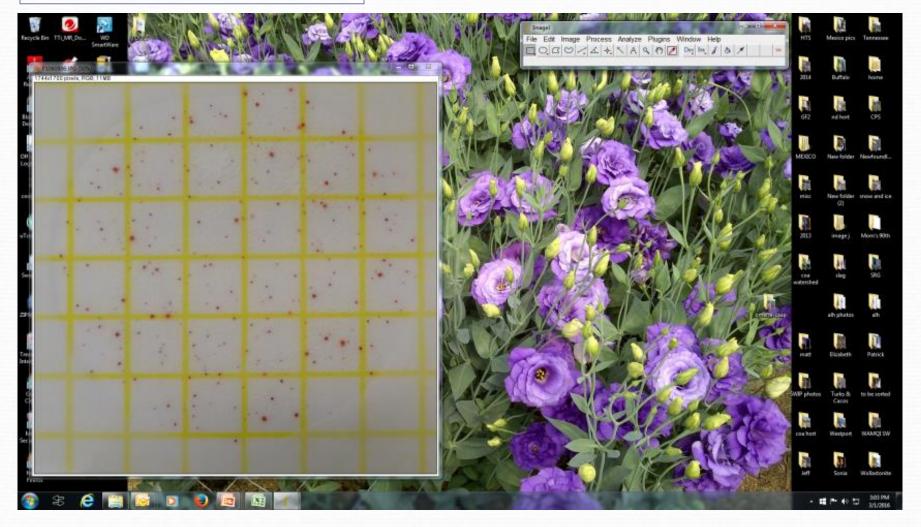
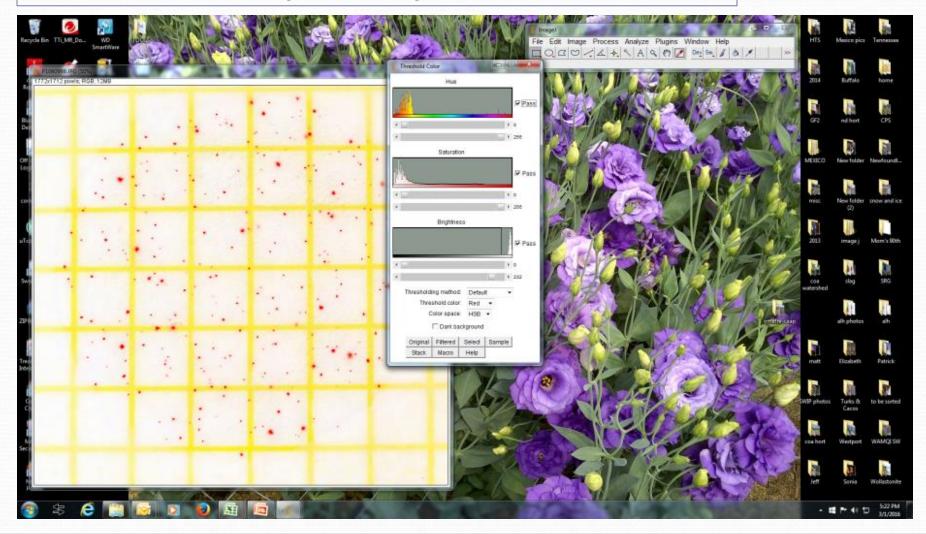
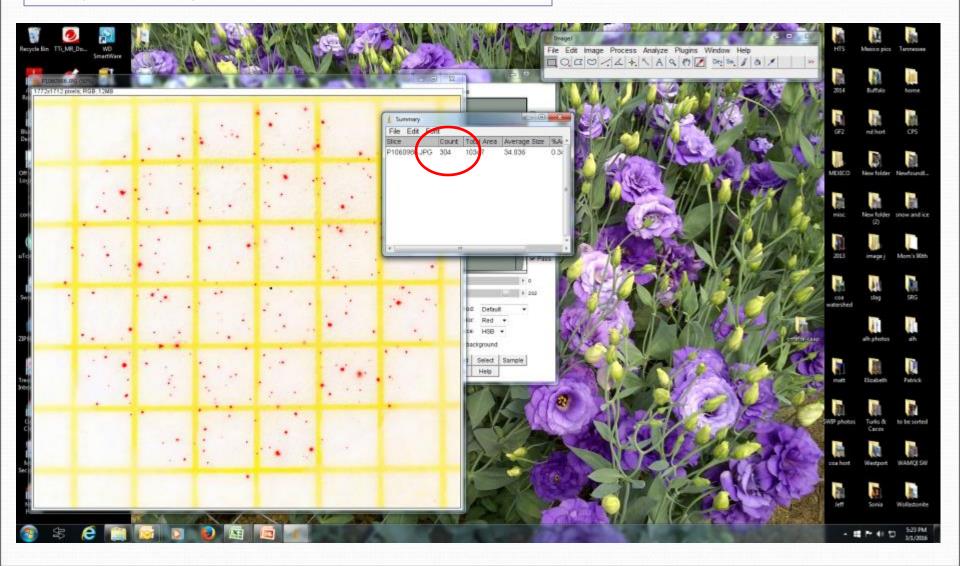

Methods: Counting

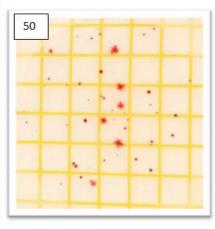
Image J & Scoring Chart

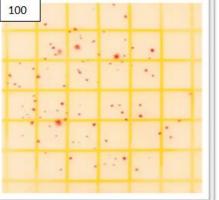


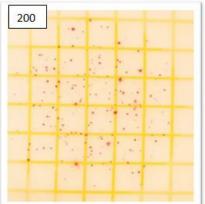
Cool tools: Image J

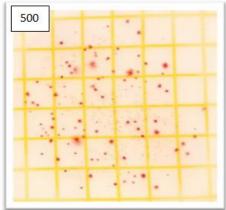

File – open, select

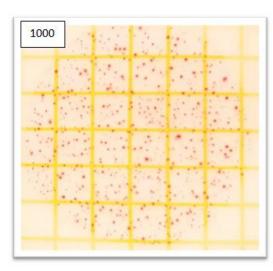

Image - crop

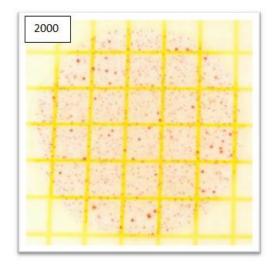

Process – subtract background; Image – adjust threshold

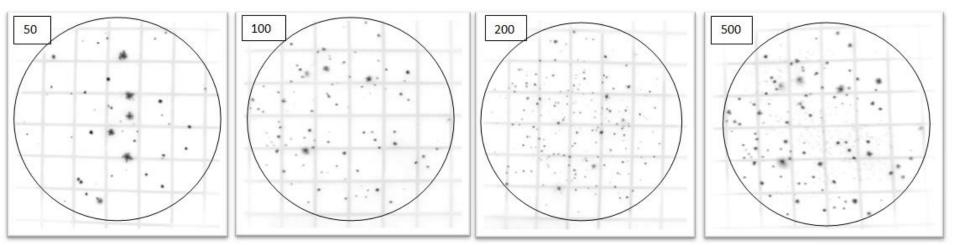


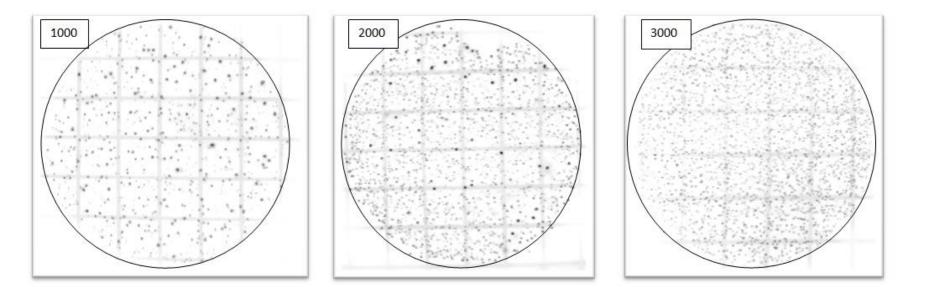

Analyze – analyze particles

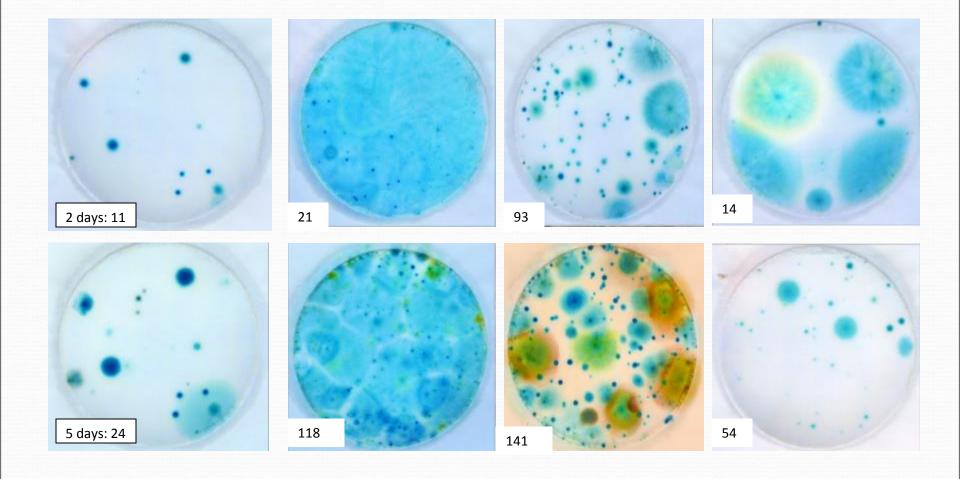



Scoring Chart #1

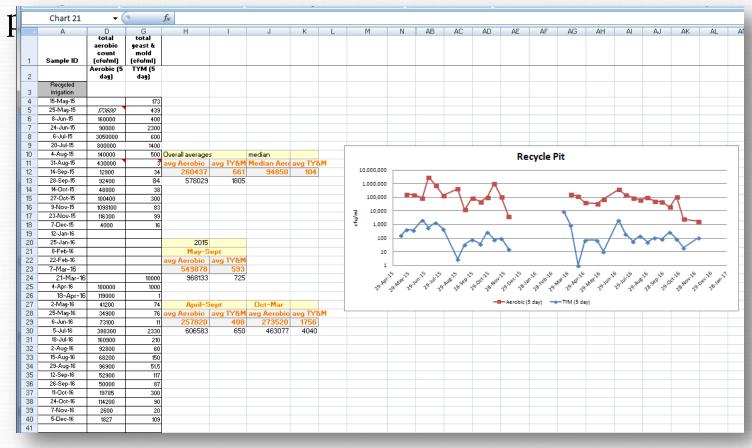








Scoring Chart #2 Total Aerobic Plate Count (3M Petrifilm APC): Comparison Chart

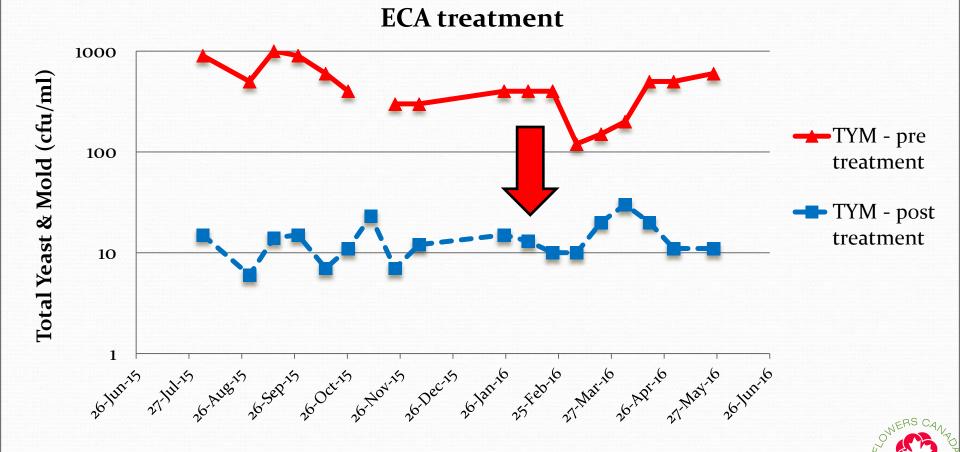


Y&M – challenging but important

Methods: Results and Record Keeping

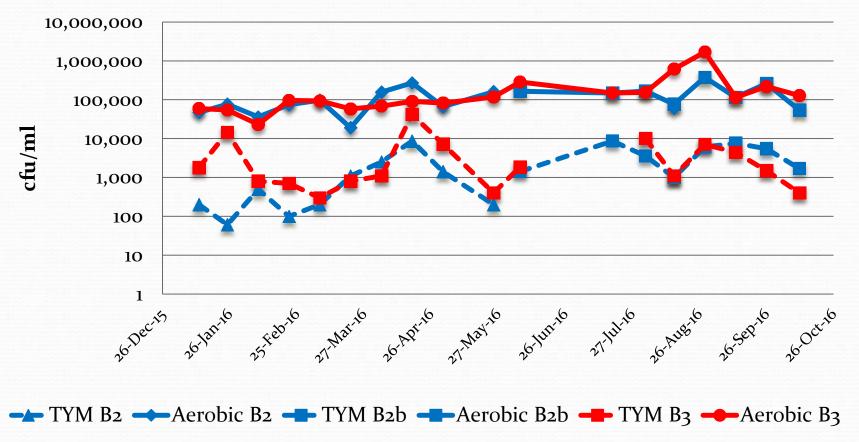
- Colony forming units per ml (cfu/ml): count X dilution
- keep track of changes in water quality along with crop

Results -


Baseline microbial water quality data (2 years)

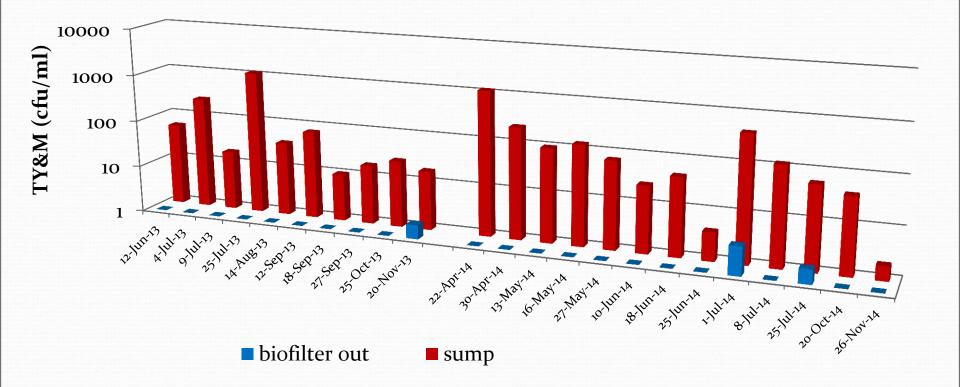
- treatment system performance and general water management
 - 7 greenhouse systems
 - 8 vegetable production and processing systems
- >3000 Petrifilm analyses!!

Typical results: treatment system performance

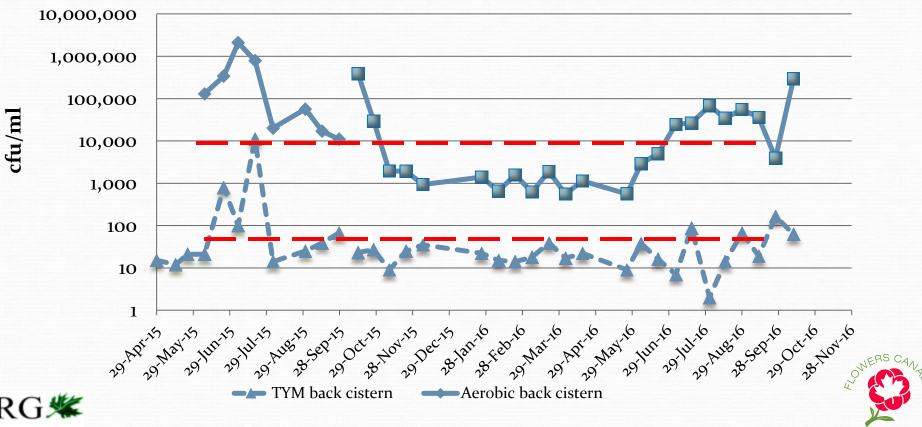

SRG Soil Resource Group

Typical results: treatment system performance

Recirc Tank and Treated (peroxide) storage tank

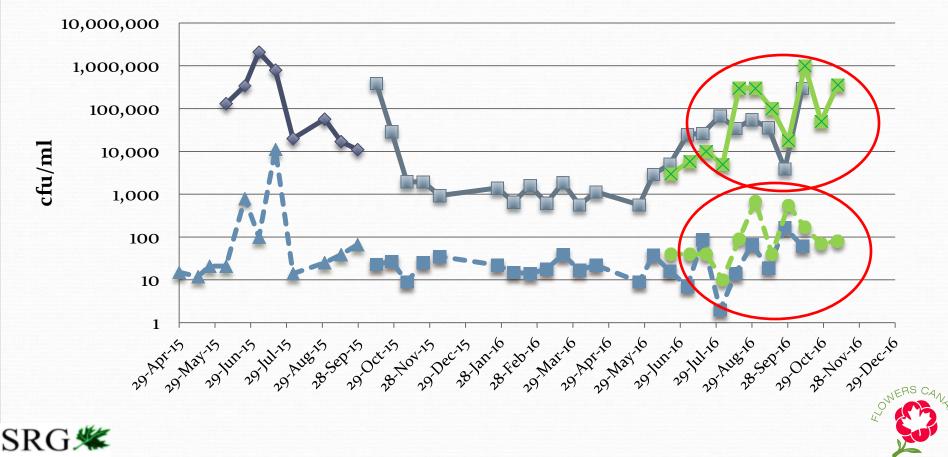


Recirc Tank and Treated (peroxide) storage tank

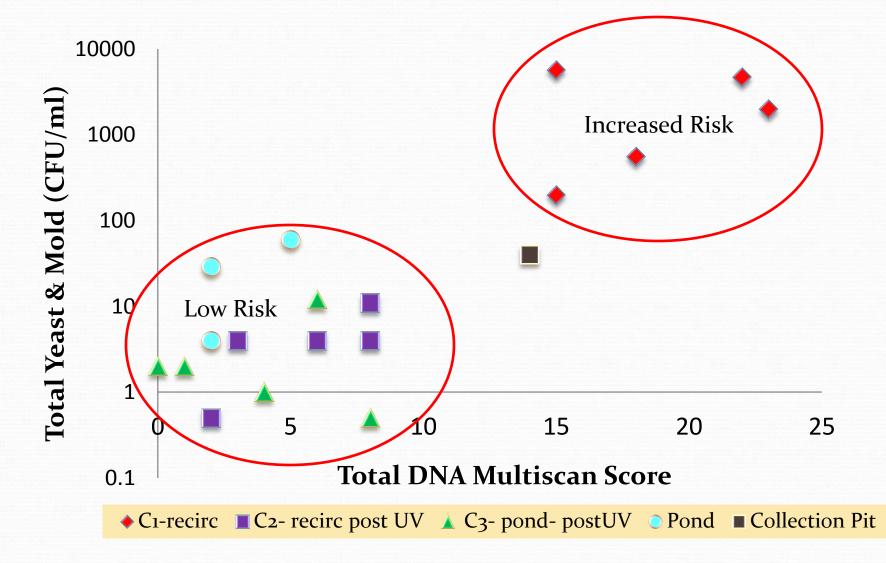

Typical results: treatment system performance

Woodchip bioreactor: removal of total yeast & mold

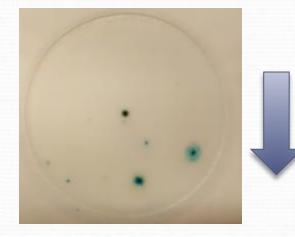
Typical results: changes over season and management


Fresh water cisterns

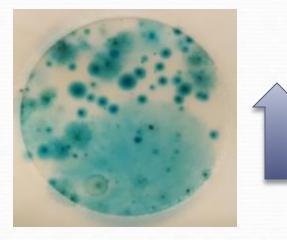
Soil Resource Group


On-site comparisons- yes you can!

Fresh water cisterns



Soil Resource Group


Implications for growers: Petrifilms and DNA Multiscans

RISK Determination

- Low counts
- Consistent results
- Treatment system OK
- Scouting looks OK
- Track changes in levels with water sources changes (e.g. pond vs roof)

- High counts
- Inconsistent results
- Unusual spikes in data
- Send for DNA multiscan?
- Extra scouting for issues?
- Check/maintain treatment equipment?
- Clean tanks, including feed tanks

Other parameters

- Test strips/meters for sanitizer residuals and other chemicals – keep records along with microbial counts
 - peroxide
 - chlorine free & total
 - chlorine dioxide
 - pH
 - ammonia
 - nitrate
 - phosphate

Next Steps

Workshops –

- Niagara area: February 24th (Rittenhouse)
- Holland Marsh area March 8th (Bradford)

Ordering supplies and equipment through FCO

• SOON please!!!!!

• Contact us:

- Ann Huber, SRG; <u>ahuber@srgresearch.ca</u>
- Jeanine West, FCO; jeanine@fco.ca

Acknowledgements

- Flowers Canada (Ontario) Inc.,
- Holland Marsh Growers Association & LSGBCUF project,
- Steering Committee Members, and
- Our Growers!!

This project was funded in part through *Growing Forward 2 (GF2)*, a federal-provincial-territorial-initiative. The Agricultural Adaptation Council assists in the delivery of *GF2* in Ontario.

ntario

